Errata

The Joy of Sets:
Fundamentals of Contemporary Set Theory
by Keith Devlin

Due to a production error, the symbol | for function restriction was omit-
ted throughout the book. It occurs 70 times, on 21 pages, as follows:

p. 14, 4 times, bottom of page:
f T v={(a,f(a)) | a € u}.

Notice that f [ u is a function, with domain u.
Exercise 1.6.4. Prove thatif f : z — y and u C z, then
(1) flu] =ran(f [ w);
(ii) £ u=fn(uxran(f)).
Let f : z — y. We say f is injective (or one-one) if and only if

a#b— fla) # F(b).

p. 21, 1 time, Eq. (2):

2 (9y | X2): Xz 2 (Z(Y))g, (a)-

p. 25, 1 time, following first displayed equation:

denotes f [ 8. This clearly gives a precise meaning to what we generally

p. 51, 2 times, preceding Sect. 2.6:

Definitions of the above kind are sometimes referred to as definitions
‘by induction’. More correctly they are definitions by recursion. (Induction
is a method of proof, not of definition.) Letting f:On— V (use of class
notation!) be the ‘function’ f(a) = V,, we define f(a) in terms of f | «
(i.e. in terms of (f(8) | B < @)). Indeed, we have

fla) =U{P((f T 2)(B)) | B < e}

That such definitions are possible in ZF set theory is a consequence of the
recursion principle, which I consider next.

p. 52, 2 times, 1st and 3rd displayed equations:

fl@) =h(o, f | a).

¢l f [ o, f(a)):

p. 53, 8 times, 3rd, 5th, and 6th displayed equations:

fl@)=h(a,f [ a)
fla)=h(a,f [ a)

file) = h(a, fi [ @).



p. 54, 13 times, middle of page:

Now assume p > 0 and that the result holds for all u’ < u. Thus, for
u<p fil w=fol . If pis a limit ordinal, then it follows at once
that fi = fa. Otherwise, let 4 = v + 1. Then we have, by the induction
hypothesis, f1 [ v = f, [ v. Hence

) =hv, fi [ v)=h(v,fo | v) = fa(v).
Thus,
fi=(h T DU A} = (B2 T UL HO)} = £
which completes the proof. O

Turning to the proof of the existence part of Theorem 2.6.1, let M be
the class

M={f1 @ <N[f:n—V)A (Vo€ p)(f(e)=he, f [ )]}

In order to prove Theorem 2.6.1, it suffices to show that there is a function
f € M such that dom(f) = A.

Lemma 2.6.3 Let f,g € M. Let p = dom(f), v = dom(g), and suppose
p<v. Then f=g [ p.

Proof: For all o € u, we have
fl@) = h(e,f [ o),
h(a,g [ a).

So, by Lemma 2.6.2, f =g [ p. O
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p. 55, 8 times, 2nd line and 2nd and 3rd displayed equations:

Using Lemma 2.6.3, it is easily seen that f; is a function. Moreover, for
each v < pu, fo [ v=F(v), so for all v < p, we have

(Va € v)(foe) = h(a, fo [ @)).

f(a) =h(a, f [ ).

p. 56, 5 times, preceding Sect. 2.7:
(a) (Vo € On)(Ty)(V2)[z = y < ¥(a, 2));

(b) (Va)(Vy)[¥(a,y) « (32)(z is a function A dom(z) = a) A
(V€ € @)g(&, 2 [ §,2(6)) N (o, 2,9)]

I shall not give the proof in detail. In fact, the idea is much as in
Theorem 2.6.1, only now we cannot apply the replacement axiom to produce
our function as we did then. Indeed, we cannot produce a function at all
(working in ZF), since what we eventually get is a proper class. The only
way to prove this is to start with the formula ¢ and explicitly produce an
appropriate formula ¢ as above.

We take for our 1 precisely the LAST formula that appears on the right
of the double arrow in (b) above, namely,

(32)(z is a function A dom(z) = a) A (V€ € a)@(€,z | €, 2(8)) A d(a, 2,y).

This makes condition (b) trivially true and leaves us only to prove (a).
(Actually, we should also check uniqueness, but this is really implicit in
(b).) I sketch the proof, using classes instead of formulas.

Let h: OnxV — V. Define a class f by

f={(a,z) | (@ € On) A (32)[(2 is a function ) Adom(z) = a A
(V€ € a)(2(€) = h(§,2 [ €)) Az =h(e,2)]}.

It is easily seen that if (a,z), (a,z’) € f, then z = z’. And if there
were an « such that no z existed with (e, z) € f, then consideration of the
least such a would lead speedily to a contradiction. Hence f: On — V.
And clearly,

fl@)=h(a,f [ a)
for all o. Finally, if g: On — V is such that g(a) = h(a, g [ @), then by
induction on a we get f(a) = g(a) for all @, so f =g.

Exercise 2.6.2. Fill in the details in the above sketch. Then give the proof
without any use of classes. '

p. 62, 1 time, 3rd displayed equation:

K={f|1(3geG)fcglC9)}

p. 63, 1 time, 2nd displayed equation:

f(.’l?) = h(xvf f :E).



p. 94, 2 times, middle of page:

Then
fo I (ka x {a}) : ko x {a} = Aq.

Since Ko < Ay and |kq X {@}| = Kq, the function f, | (ko X {a}) cannot
be surjective. Hence we can pick 6, € Aq — falka X {a}]. Let

0= {ba|a<p).

p. 110, 2 times, last displayed equation:

To={e€”2| (Vm<n)e | (m+1)#em [ (m+1)]}

p. 111, 3 times, following 3rd displayed equation:

Clearly, f € 2. Butforalln, f [ (n+1) € T,s0 f [ (n+1) # ¢, [ (n+1).
Thus f ¢ {e, | n < w}, a contradiction. O

p. 112, 10 times, bottom half of page:

Since the ordering is inclusion, we are only concerned with which se-
quences each T, will contain. The definition is by recursion on the levels.
That is, we define T, from Ug <alp- We use T [ o to denote both the set
Us<oTs and the tree on this set determined by the inclusion order. The
recursion is carried out to preserve the following condition:

() If s € T, and @ < B < wy, then, for each rational number ¢ >sup(s),
there is a ¢ € T such that s C ¢ and sup(t) < g.

To commence, we set Ty = {@}. If T | (a+1) is defined, we define To+1
as

Ta+1={s€"+1Q|s[deTa}

where Q is the set of rationals. If |T,| < o, then since |Q] = No, we have
|Tat1] = Ro. Moreover, if (%) is valid for T | (a+1), it will clearly be valid
for T [ (a+2).

There remains the case where T | « is defined for a a limit ordinal.
Let us call a branch b of T' | o cofinal if it intersects each level of T [ «
(i.e. if its order-type under the tree-ordering is ). In order to define T,
we must extend some cofinal branches of T' | a. Indeed, any element of T,
will necessarily be of the form Ub, where b is a cofinal branch of T [ a.

p. 118, 8 times, preéeding Sect. 4.5:

Now, if Jb € Ty, |Jb must be bounded above in Q, so it must be the
case that the set {sup(s) | s € b} is bounded above in Q. (As will become
clear in a moment, it was in order to ensure that such branches b can always
be found that we introduced the requirement (*).) Now, we cannot simply
extend all such branches, since there are uncountably many of them, which
would make T, uncountable. On the other hand, we must ensure that ()
holds for T [ (a+1). So we proceed as follows.

Notice first that (x) will hold for 7' [ « providing it holds for each T | 8
for 8 < a.

Let (o, | n < w) be a strictly increasing sequence of ordinals cofinal in
a. For each s € T | a, and each rational number g >sup(s) , we define an
element b(s, q) of “Q as follows.

Let n(s) be least such that s € T' | ay(s). By (%), pick sqn) € Ta,,,
so that s C sp(s) and sup(sn(s) < g-

We define s(n) for n(s) < n < w now by recursion. Let sp41 € T, ,,
be such that s, C sp+1 and sup(sp+1) < ¢g. If sup(sp) < g, then by (*),
such an s,4; can always be found.

Now set

b(s’q) = Un(s)<n<ws"'
Clearly, b(s,q) € “Q and s C b(s, g). Moreover, sup(b(s,q)) < g. We define

ta ={b(s,9) |s€T [ ange QAg>sup(s)}

If IT | a| < Ro, then |to] < Ro. Moreover, t [ (a+1) satisfies (x) by virtue
of the construction. ‘

That completes the definition of T. An easy induction on the levels
shows that condition (ii) holds. (The induction steps have already been
noted.) And (iii) follows directly from (*). The proof is complete. O

p. 119, 4 times, 4th and 5th displayed equations:

gaofAl r T=ga°fA2 r T'

Since g, is one-one, this implies that

fa, | T=fa, | T. ‘

p- 179, 2 times, last line:

(For small systems Mg.) It suffices to show that (ii) for small systems
implies the unrestricted form of (ii). Let My be a system, and let 7y, 7o :
My — M be system maps. Let a € My. Then (M), is a small system,
and m, [ (Mo)e = 72 [ (Mp)a- In particular, m(a) = m2(a). But a € My
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p. 181, 1 time, proof of Lemma 7.8.13:
Since M is complete, G has a unique M-decoration, d. Let dg = d [ Go.

p. 186, f [ u:
flu,14
p. 187, T | a:

T|a,ll2
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