Computably Enumerable Splittings, Randomness and Lowness

George Barmpalias
Victoria University of Wellington

Victoria University of Wellington

8th December 2007
Relative Randomness

Given two oracles A, B it is natural to ask how the class of random sequences relative to A relate with the class of random sequences relative to B.

- This relation is formally represented by the LR reducibility:
- We say that A is LR reducible to B if every sequence which is not random relative to A, is not random relative to B.
- We say that $A \equiv_{LR} B$ if the classes of A-randoms and B-randoms coincide.
Relative Randomness

Given two oracles A, B it is natural to ask how the class of random sequences relative to A relate with the class of random sequences relative to B.

- This relation is formally represented by the LR reducibility:
 - We say that A is LR reducible to B if every sequence which is not random relative to A, is not random relative to B.
 - We say that $A \equiv_{LR} B$ if the classes of A-randoms and B-randoms coincide.
Relative Randomness

Given two oracles A, B it is natural to ask how the class of random sequences relative to A relate with the class of random sequences relative to B.

- This relation is formally represented by the LR reducibility:
- We say that A is LR reducible to B if every sequence which is not random relative to A, is not random relative to B.
- We say that $A \equiv_{LR} B$ if the classes of A-randoms and B-randoms coincide.
Relative Randomness

Given two oracles A, B it is natural to ask how the class of random sequences relative to A relate with the class of random sequences relative to B.

- This relation is formally represented by the LR reducibility:
- We say that A is LR reducible to B if every sequence which is not random relative to A, is not random relative to B.
- We say that $A \equiv_{LR} B$ if the classes of A-randoms and B-randoms coincide.
Lowness

• There are a number of lowness notions for oracles in computability theory and algorithmic randomness.

• For example:
 - low, superlow oracles with respect to the jump
 - oracles of hyperimmune-free Turing degree (\(0\)-dominated oracles)
 - low for random oracles
 - low for \(\Omega\) (the halting probability) oracles
 - Weakly low for \(K\) oracles

• These are properties asserting that an oracle is weak in a certain sense.

• We have studied lowness in the context of the \(LR\) reducibility

• and have determined various connections with a number of lowness notions and the Turing computation
Lowness

- There are a number of lowness notions for oracles in computability theory and algorithmic randomness.
- For example:
 - low, superlow oracles with respect to the jump
 - oracles of hyperimmune-free Turing degree (0-dominated oracles)
 - low for random oracles
 - low for Ω (the halting probability) oracles
 - Weakly low for K oracles
- These are properties asserting that an oracle is weak in a certain sense.
- We have studied lowness in the context of the LR reducibility
- and have determined various connections with a number of lowness notions and the Turing computation
Lowness

- There are a number of lowness notions for oracles in computability theory and algorithmic randomness.
- For example:
 - low, superlow oracles with respect to the jump
 - oracles of hyperimmune-free Turing degree (\(0\)-dominated oracles)
 - low for random oracles
 - low for \(\Omega\) (the halting probability) oracles
 - Weakly low for K oracles
- These are properties asserting that an oracle is weak in a certain sense.
- We have studied lowness in the context of the LR reducibility
- and have determined various connections with a number of lowness notions and the Turing computation
Lowness

- There are a number of lowness notions for oracles in computability theory and algorithmic randomness.
- For example:
 - low, superlow oracles with respect to the jump
 - oracles of hyperimmune-free Turing degree (0-dominated oracles)
 - low for random oracles
 - low for Ω (the halting probability) oracles
 - Weakly low for K oracles
- These are properties asserting that an oracle is weak in a certain sense.
- We have studied lowness in the context of the LR reducibility
- and have determined various connections with a number of lowness notions and the Turing computation
There are a number of lowness notions for oracles in computability theory and algorithmic randomness. For example:

- low, superlow oracles with respect to the jump
- oracles of hyperimmune-free Turing degree (0-dominated oracles)
- low for random oracles
- low for Ω (the halting probability) oracles
- Weakly low for K oracles

These are properties asserting that an oracle is weak in a certain sense.

We have studied lowness in the context of the LR reducibility and have determined various connections with a number of lowness notions and the Turing computation.
Lowness

- There are a number of lowness notions for oracles in computability theory and algorithmic randomness.
- For example:
 - low, superlow oracles with respect to the jump
 - oracles of hyperimmune-free Turing degree ($\mathbf{0}$-dominated oracles)
 - low for random oracles
 - low for Ω (the halting probability) oracles
 - Weakly low for K oracles
- These are properties asserting that an oracle is weak in a certain sense.
- We have studied lowness in the context of the LR reducibility
- and have determined various connections with a number of lowness notions and the Turing computation
Lowness

- There are a number of lowness notions for oracles in computability theory and algorithmic randomness.
- For example:
 - low, superlow oracles with respect to the jump
 - oracles of hyperimmune-free Turing degree (\emptyset-dominated oracles)
 - low for random oracles
 - low for Ω (the halting probability) oracles
 - Weakly low for K oracles

- These are properties asserting that an oracle is weak in a certain sense.
- We have studied lowness in the context of the LR reducibility
- and have determined various connections with a number of lowness notions and the Turing computation
Lowness

• There are a number of lowness notions for oracles in computability theory and algorithmic randomness.
• For example:
 • low, superlow oracles with respect to the jump
 • oracles of hyperimmune-free Turing degree (0-dominated oracles)
 • low for random oracles
 • low for \(\Omega \) (the halting probability) oracles
 • Weakly low for \(K \) oracles

• These are properties asserting that an oracle is weak in a certain sense.
• We have studied lowness in the context of the LR reducibility
• and have determined various connections with a number of lowness notions and the Turing computation
Lowness

- There are a number of lowness notions for oracles in computability theory and algorithmic randomness.
- For example:
 - low, superlow oracles with respect to the jump
 - oracles of hyperimmune-free Turing degree ($\mathbf{0}$-dominated oracles)
 - low for random oracles
 - low for Ω (the halting probability) oracles
 - Weakly low for K oracles
- These are properties asserting that an oracle is weak in a certain sense.
- We have studied lowness in the context of the LR reducibility
- and have determined various connections with a number of lowness notions and the Turing computation
There are a number of lowness notions for oracles in computability theory and algorithmic randomness.

For example:
- low, superlow oracles with respect to the jump
- oracles of hyperimmune-free Turing degree (0-dominated oracles)
- low for random oracles
- low for Ω (the halting probability) oracles
- Weakly low for K oracles

These are properties asserting that an oracle is weak in a certain sense.

We have studied lowness in the context of the LR reducibility
and have determined various connections with a number of lowness notions and the Turing computation.
The Cantor space

- 2^ω is the space of infinite binary strings: the *reals*
- $2^{<\omega}$ is the space of finite binary strings
- The standard topology on 2^ω is induced by the basic open sets: $[\sigma] = \{\sigma X : X \in 2^\omega\}$ for all $\sigma \in 2^{<\omega}$.
- Lebesgue measure on the Cantor space: the measure of a basic open set $[\sigma]$ is $\mu([\sigma]) = 2^{-|\sigma|}$
The Cantor space

- 2^ω is the space of infinite binary strings: the *reals*
- $2^{<\omega}$ is the space of finite binary strings
- The standard topology on 2^ω is induced by the basic open sets: $[\sigma] = \{\sigma X : X \in 2^\omega\}$ for all $\sigma \in 2^{<\omega}$.
- Lebesgue measure on the Cantor space: the measure of a basic open set $[\sigma]$ is $\mu([\sigma]) = 2^{-|\sigma|}$
The Cantor space

- 2^ω is the space of infinite binary strings: the *reals*
- $2^{<\omega}$ is the space of finite binary strings
- The standard topology on 2^ω is induced by the basic open sets: $[\sigma] = \{\sigma X : X \in 2^\omega\}$ for all $\sigma \in 2^{<\omega}$.
- Lebesgue measure on the Cantor space: the measure of a basic open set $[\sigma]$ is $\mu([\sigma]) = 2^{-|\sigma|}$
The Cantor space

- 2^ω is the space of infinite binary strings: the *reals*
- $2^{<\omega}$ is the space of finite binary strings
- The standard topology on 2^ω is induced by the basic open sets: $[\sigma] = \{\sigma X : X \in 2^\omega\}$ for all $\sigma \in 2^{<\omega}$.
- Lebesgue measure on the Cantor space: the measure of a basic open set $[\sigma]$ is $\mu([\sigma]) = 2^{-|\sigma|}$
Martin-Löf Randomness

- Identify finite binary strings with intervals in $[0, 1]$: $\sigma \rightarrow [\sigma]$
- Prefix-free sets of finite binary strings correspond to independent (basic open) sets of reals

Definition
A Martin-Löf test M is a uniform sequence (E_i) of c.e. sets of binary strings such that $\mu(E_i) \leq 2^{-i}$. A real α avoids M if some for i, $\alpha \notin E_i$. A real number is called random if it avoids all Martin-Löf tests. W.l.o.g. assume $E_{i+1} \subset E_i$.

- Martin-Löf tests and randomness relativize to any oracle.
- we say n-random for \emptyset^{n-1}-random
Martin-Löf Randomness

- Identify finite binary strings with intervals in $[0, 1]$: $\sigma \rightarrow [\sigma]

- Prefix-free sets of finite binary strings correspond to independent (basic open) sets of reals

Definition

A Martin-Löf test \mathcal{M} is a uniform sequence (E_i) of c.e. sets of binary strings such that $\mu(E_i) \leq 2^{-i}$. A real α avoids \mathcal{M} if some for i, $\alpha \not\in E_i$. A real number is called random if it avoids all Martin-Löf tests. W.l.o.g. assume $E_{i+1} \subset E_i$.

- Martin-Löf tests and randomness relativize to any oracle.
- we say n-random for \emptyset^{n-1}-random
Martin-Löf Randomness

- Identify finite binary strings with intervals in $[0, 1]$: $\sigma \rightarrow [\sigma]$
- Prefix-free sets of finite binary strings correspond to independent (basic open) sets of reals

Definition

A Martin-Löf test \mathcal{M} is a uniform sequence (E_i) of c.e. sets of binary strings such that $\mu(E_i) \leq 2^{-i}$. A real α avoids \mathcal{M} if some for i, $\alpha \notin E_i$. A real number is called random if it avoids all Martin-Löf tests. W.l.o.g. assume $E_{i+1} \subset E_i$.

- Martin-Löf tests and randomness relativize to any oracle.
- we say n-random for \emptyset^{n-1}-random
Martin-Löf Randomness

- Identify finite binary strings with intervals in $[0, 1]$: $\sigma \rightarrow [\sigma]$
- Prefix-free sets of finite binary strings correspond to independent (basic open) sets of reals

Definition

A Martin-Löf test \mathcal{M} is a uniform sequence (E_i) of c.e. sets of binary strings such that $\mu(E_i) \leq 2^{-i}$. A real α avoids \mathcal{M} if some for i, $\alpha \not\in E_i$. A real number is called random if it avoids all Martin-Löf tests. W.l.o.g. assume $E_{i+1} \subset E_i$.

- Martin-Löf tests and randomness relativize to any oracle.
- We say n-random for \emptyset^{n-1}-random
Martin-Löf Randomness

• Identify finite binary strings with intervals in $[0, 1]$: $\sigma \rightarrow [\sigma]$
• Prefix-free sets of finite binary strings correspond to independent (basic open) sets of reals

Definition
A Martin-Löf test \mathcal{M} is a uniform sequence (E_i) of c.e. sets of binary strings such that $\mu(E_i) \leq 2^{-i}$. A real α avoids \mathcal{M} if some for i, $\alpha \not\in E_i$. A real number is called random if it avoids all Martin-Löf tests. W.l.o.g. assume $E_{i+1} \subset E_i$.

• Martin-Löf tests and randomness relativize to any oracle.
• we say n-random for \emptyset^{n-1}-random
Relative randomness and lowness

- A is *low for random* if every random is A-random.
- Relativizing we get: $A \leq_{LR} B$ if every B-random is A-random.
- \leq_{LR} is transitive, Σ^0_3 and it contains \leq_T.
- Induced degrees: $A \equiv_{LR} B$ if the A-randoms coincide with the B-randoms.
Relative randomness and lowness

- A is *low for random* if every random is A-random.
- Relativizing we get: $A \leq_{LR} B$ if every B-random is A-random.
- \leq_{LR} is transitive, Σ^0_3 and it contains \leq_T.
- Induced degrees: $A \equiv_{LR} B$ if the A-randoms coincide with the B-randoms.
Relative randomness and lowness

- A is *low for random* if every random is A-random.
- Relativizing we get: $A \leq_{LR} B$ if every B-random is A-random.
- \leq_{LR} is transitive, Σ^0_3 and it contains \leq_T.
- Induced degrees: $A \equiv_{LR} B$ if the A-randoms coincide with the B-randoms.
Relative randomness and lowness

- A is *low for random* if every random is A-random.
- Relativizing we get: $A \leq_{LR} B$ if every B-random is A-random.
- \leq_{LR} is transitive, Σ^0_3 and it contains \leq_T.
- Induced degrees: $A \equiv_{LR} B$ if the A-randoms coincide with the B-randoms.
Standard Conventions

• we write $\mu(U)$ for the measure of the corresponding class of reals
• all subset relations $U \subset V$ where U, V are sets of strings actually refer to the corresponding classes of reals
• Boolean operations on sets of strings actually refer to the same operations on the corresponding classes of reals.
• all sets of strings will be prefix free. Even when effective enumerations are concerned one can assume this without loss of effectiveness.
Standard Conventions

- we write $\mu(U)$ for the measure of the corresponding class of reals
- all subset relations $U \subset V$ where U, V are sets of strings actually refer to the corresponding classes of reals
- Boolean operations on sets of strings actually refer to the same operations on the corresponding classes of reals.
- all sets of strings will be prefix free. Even when effective enumerations are concerned one can assume this without loss of effectiveness.
Standard Conventions

- we write $\mu(U)$ for the measure of the corresponding class of reals
- all subset relations $U \subset V$ where U, V are sets of strings actually refer to the corresponding classes of reals
- Boolean operations on sets of strings actually refer to the same operations on the corresponding classes of reals.
- all sets of strings will be prefix free. Even when effective enumerations are concerned one can assume this without loss of effectiveness.
Standard Conventions

- we write $\mu(U)$ for the measure of the corresponding class of reals
- all subset relations $U \subset V$ where U, V are sets of strings actually refer to the corresponding classes of reals
- Boolean operations on sets of strings actually refer to the same operations on the corresponding classes of reals.
- all sets of strings will be prefix free. Even when effective enumerations are concerned one can assume this without loss of effectiveness.
Basic fact (Kjos-Hansen)

The following are equivalent:

- $A \leq_{LR} B$
 - For every Σ^0_1,A class T^A of measure < 1 there is a Σ^0_1,B class V^B of measure < 1 such that
 $$T^A \subseteq V^B.$$
 - For some member U^A of a universal Martin-Löf test relative to A there is $V^B \in \Sigma^0_1,B$ with $\mu V^B < 1$ and
 $$U^A \subseteq V^B.$$
Basic fact (Kjos-Hansen)

The following are equivalent:

• $A \leq_{LR} B$

• For every Σ^0_1, A class T^A of measure < 1 there is a Σ^0_1, B class V^B of measure < 1 such that

$$T^A \subseteq V^B.$$

• For some member U^A of a universal Martin-Löf test relative to A there is $V^B \in \Sigma^0_1, B$ with $\mu V^B < 1$ and

$$U^A \subseteq V^B.$$
Basic fact (Kjos-Hansen)

The following are equivalent:

- $A \leq_{LR} B$
- For every Σ^0_1, A class T^A of measure < 1 there is a Σ^0_1, B class V^B of measure < 1 such that
 \[T^A \subseteq V^B. \]
- For some member U^A of a universal Martin-Löf test relative to A there is $V^B \in \Sigma^0_1, B$ with $\mu V^B < 1$ and
 \[U^A \subseteq V^B. \]
Basic Structure and Properties

- Each degree contains countably many elements (Nies).
- There is a least degree containing the low for random reals. Some of them are not computable (Kučera).
- It is not known if there is a least upper bound for any two degrees.
- The usual $A \oplus B = \{2n \mid n \in A\} \cup \{2n + 1 \mid n \in B\}$ is not a supremum (Nies).
- The measure of upper cones of LR degrees is 0 (an application of van Lambalgen’s theorem by Frank Stephan).
Basic Structure and Properties

- Each degree contains countably many elements (Nies).
- There is a least degree containing the low for random reals. Some of them are not computable (Kučera).
- It is not known if there is a least upper bound for any two degrees.
- The usual $A \oplus B = \{2n \mid n \in A\} \cup \{2n + 1 \mid n \in B\}$ is not a supremum (Nies).
- The measure of upper cones of LR degrees is 0 (an application of van Lambalgen’s theorem by Frank Stephan).
Basic Structure and Properties

- Each degree contains countably many elements (Nies).
- There is a least degree containing the low for random reals. Some of them are not computable (Kučera).
- It is not known if there is a least upper bound for any two degrees.
- The usual $A \oplus B = \{2n \mid n \in A\} \cup \{2n + 1 \mid n \in B\}$ is not a supremum (Nies).
- The measure of upper cones of LR degrees is 0 (an application of van Lambalgen’s theorem by Frank Stephan).
Basic Structure and Properties

- Each degree contains countably many elements (Nies).
- There is a least degree containing the low for random reals. Some of them are not computable (Kučera).
- It is not known if there is a least upper bound for any two degrees.
- The usual $A \oplus B = \{2n \mid n \in A\} \cup \{2n + 1 \mid n \in B\}$ is not a supremum (Nies).
- The measure of upper cones of LR degrees is 0 (an application of van Lambalgen’s theorem by Frank Stephan)
Basic Structure and Properties

- Each degree contains countably many elements (Nies).
- There is a least degree containing the low for random reals. Some of them are not computable (Kučera).
- It is not known if there is a least upper bound for any two degrees.
- The usual $A \oplus B = \{2n \mid n \in A\} \cup \{2n + 1 \mid n \in B\}$ is not a supremum (Nies).
- The measure of upper cones of LR degrees is 0 (an application of van Lambalgen’s theorem by Frank Stephan)
Current Knowledge on the LR degrees

- Structure of Turing degrees inside an LR degree, in the c.e. case and globally.
- Uncountable and countable lower LR-cones.
- Cone avoidance, weak density for the c.e. LR degrees, c.e. splittings
- Uncountable antichains of LR degrees, priority methods and forcing arguments.
Current Knowledge on the LR degrees

- Structure of Turing degrees inside an LR degree, in the c.e. case and globally.
- Uncountable and countable lower LR-cones.
- Cone avoidance, weak density for the c.e. LR degrees, c.e. splittings
- Uncountable antichains of LR degrees, priority methods and forcing arguments.
Current Knowledge on the \(LR \) degrees

- Structure of Turing degrees inside an \(LR \) degree, in the c.e. case and globally.
- Uncountable and countable lower \(LR \)-cones.
- Cone avoidance, weak density for the c.e. \(LR \) degrees, c.e. splittings
- Uncountable antichains of \(LR \) degrees, priority methods and forcing arguments.
Current Knowledge on the LR degrees

- Structure of Turing degrees inside an LR degree, in the c.e. case and globally.
- Uncountable and countable lower LR-cones.
- Cone avoidance, weak density for the c.e. LR degrees, c.e. splittings
- Uncountable antichains of LR degrees, priority methods and forcing arguments.
A Splitting theorem for the c.e. LR degrees

Given a c.e. oracle A and a c.e. splitting of it, it is natural to ask what notions of randomness the components of it induce, and how these are related to each other and to A-randomness.

By known facts, if a c.e. A is low for random, then any splitting of it will produce oracles inducing the same notion of randomness.
Given a c.e. oracle A and a c.e. splitting of it, it is natural to ask what notions of randomness the components of it induce, and how these are related to each other and to A-randomness.

By known facts, if a c.e. A is low for random, then any splitting of it will produce oracles inducing the same notion of randomness.
The following theorem says that if A is c.e. and not low for random, then there is a nontrivial c.e. splitting of it.

Theorem
If A is c.e. and not low for random then there are c.e. B, C such that

- $B \cap C = \emptyset$
- $B \cup C = A$
- $B \not\leq_{LR} C$ and $C \not\leq_{LR} B$.
A Splitting theorem for the c.e. LR degrees

The following theorem says that if A is c.e. and not low for random, then there is a nontrivial c.e. splitting of it.

Theorem

If A is c.e. and not low for random then there are c.e. B, C such that

- $B \cap C = \emptyset$
- $B \cup C = A$
- $B \not\leq_{LR} C$ and $C \not\leq_{LR} B$.
A Splitting theorem for the c.e. LR degrees

The following theorem says that if A is c.e. and not low for random, then there is a nontrivial c.e. splitting of it.

Theorem

If A is c.e. and not low for random then there are c.e. B, C such that

- $B \cap C = \emptyset$
- $B \cup C = A$
- $B \not\leq_{LR} C$ and $C \not\leq_{LR} B$.
A Splitting theorem for the c.e. LR degrees

The following theorem says that if A is c.e. and not low for random, then there is a nontrivial c.e. splitting of it.

Theorem

If A is c.e. and not low for random then there are c.e. B, C such that

- $B \cap C = \emptyset$
- $B \cup C = A$
- $B \not\leq_{LR} C$ and $C \not\leq_{LR} B.$
The following theorem says that if \(A \) is c.e. and not low for random, then there is a nontrivial c.e. splitting of it.

Theorem

If \(A \) is c.e. and not low for random then there are c.e. \(B, C \) such that

- \(B \cap C = \emptyset \)
- \(B \cup C = A \)
- \(B \not\leq_{LR} C \) and \(C \not\leq_{LR} B \).
Splitting inside an LR degree

Given a c.e. set, can we split it into two c.e. parts which induce the same notion of relative randomness? Not always.
Given a c.e. set, can we split it into two c.e. parts which induce the same notion of relative randomness? Not always.
Introduction

Splitting inside an LR degree

Theorem

There is a c.e. set A such that for all c.e. splittings B, C of it, A \not\leq{LR} B or A \not\leq_{LR} C. Moreover A can be chosen such that A \equiv_T \emptyset'._

- Say that A is of almost everywhere dominating degree if it computes a function which dominates almost all other functions.
- This is a “highness” notion.
- It is well known that given a c.e. set, it is of almost everywhere dominating degree iff A \equiv_{LR} \emptyset'.
- Then the above theorem says that there is a c.e. set of almost everywhere dominating degree which cannot be split into two c.e. parts of almost everywhere dominating degree.
Splitting inside an LR degree

There is a c.e. set A such that for all c.e. splittings B, C of it, $A \nleq_{LR} B$ or $A \nleq_{LR} C$. Moreover A can be chosen such that $A \equiv_T \emptyset'$.

- Say that A is of almost everywhere dominating degree if it computes a function which dominates almost all other functions.
- This is a “highness” notion.
- It is well known that given a c.e. set, it is of almost everywhere dominating degree iff $A \equiv_{LR} \emptyset'$.
- Then the above theorem says that there is a c.e. set of almost everywhere dominating degree which cannot be split into two c.e. parts of almost everywhere dominating degree.
Splitting inside an LR degree

Theorem

There is a c.e. set A such that for all c.e. splittings B, C of it, $A \not\leq_{LR} B$ or $A \not\leq_{LR} C$. Moreover A can be chosen such that $A \equiv_T \emptyset'$.

- Say that A is of almost everywhere dominating degree if it computes a function which dominates almost all other functions.
- This is a “highness” notion.
- It is well known that given a c.e. set, it is of almost everywhere dominating degree iff $A \equiv_{LR} \emptyset'$.
- Then the above theorem says that there is a c.e. set of almost everywhere dominating degree which cannot be split into two c.e. parts of almost everywhere dominating degree.
Splitting inside an LR degree

Theorem

*There is a c.e. set A such that for all c.e. splittings B, C of it, $A \not\leq_{LR} B$ or $A \not\leq_{LR} C$. Moreover A can be chosen such that $A \equiv_T \emptyset'$.***

- Say that A is of almost everywhere dominating degree if it computes a function which dominates almost all other functions.
- This is a “highness” notion.
- It is well known that given a c.e. set, it is of almost everywhere dominating degree iff $A \equiv_{LR} \emptyset'$.
- Then the above theorem says that there is a c.e. set of almost everywhere dominating degree which cannot be split into two c.e. parts of almost everywhere dominating degree.
Splitting inside an LR degree

Theorem

There is a c.e. set A such that for all c.e. splittings B, C of it, $A \not\leq_{LR} B$ or $A \not\leq_{LR} C$. Moreover, A can be chosen such that $A \equiv_T \emptyset'$.

- Say that A is of almost everywhere dominating degree if it computes a function which dominates almost all other functions.
- This is a “highness” notion.
- It is well known that given a c.e. set, it is of almost everywhere dominating degree iff $A \equiv_{LR} \emptyset'$.
- Then the above theorem says that there is a c.e. set of almost everywhere dominating degree which cannot be split into two c.e. parts of almost everywhere dominating degree.
About the proof

- a finite injury argument, with some coding for $A \equiv_T \emptyset'$.
- Coding may be avoided by a standard “reverse reasoning” about the complexity of the set.
- (e.g. Friedberg-Muchnik automatically produces a pair of Turing degrees joining to \emptyset').
- The idea is to construct A in such a way that any splitting of it B, C which tries to achieve $U^A \subset V^B$ and $U^A \subset V^C$ fails on at least one of the clauses.
- We try to “blow-up” V^B, V^C with a lot of measure, so that at least one of them cannot keep up with the restriction of having measure < 1.
- This argument falls into a group of arguments in the LR degrees where ideas and techniques from the Turing degrees can be transferred to the LR case.
- This is not always straightforward, and sometimes even not possible.
About the proof

- a finite injury argument, with some coding for $A \equiv_T \emptyset'$.
- Coding may be avoided by a standard “reverse reasoning” about the complexity of the set.
 - (e.g. Friedberg-Muchnik automatically produces a pair of Turing degrees joining to \emptyset').
- The idea is to construct A in such a way that any splitting of it B, C which tries to achieve $U^A \subset V^B$ and $U^A \subset V^C$ fails on at least one of the clauses.
- We try to “blow-up” V^B, V^C with a lot of measure, so that at least one of them cannot keep up with the restriction of having measure < 1.
- This argument falls into a group of arguments in the LR degrees where ideas and techniques from the Turing degrees can be transferred to the LR case.
- This is not always straightforward, and sometimes even not possible.
About the proof

- a finite injury argument, with some coding for \(A \equiv_T \emptyset' \).
- Coding may be avoided by a standard “reverse reasoning” about the complexity of the set.
- (e.g. Friedberg-Muchnik automatically produces a pair of Turing degrees joining to \(\emptyset' \)).
- The idea is to construct \(A \) in such a way that any splitting of it \(B, C \) which tries to achieve \(U^A \subseteq V^B \) and \(U^A \subseteq V^C \) fails on at least one of the clauses.
- We try to “blow-up” \(V^B, V^C \) with a lot of measure, so that at least one of them cannot keep up with the restriction of having measure \(< 1\).
- This argument falls into a group of arguments in the LR degrees where ideas and techniques from the Turing degrees can be transferred to the LR case.
- This is not always straightforward, and sometimes even not possible.
About the proof

- a finite injury argument, with some coding for $A \equiv_T \emptyset'$.
- Coding may be avoided by a standard “reverse reasoning” about the complexity of the set.
- (e.g. Friedberg-Muchnik automatically produces a pair of Turing degrees joining to \emptyset').
- The idea is to construct A in such a way that any splitting of it B, C which tries to achieve $U^A \subset V^B$ and $U^A \subset V^C$ fails on at least one of the clauses.
- We try to “blow-up” V^B, V^C with a lot of measure, so that at least one of them cannot keep up with the restriction of having measure < 1.
- This argument falls into a group of arguments in the LR degrees where ideas and techniques from the Turing degrees can be transferred to the LR case.
- This is not always straightforward, and sometimes even not possible.
About the proof

- a finite injury argument, with some coding for $A \equiv_T \emptyset'$.
- Coding may be avoided by a standard “reverse reasoning” about the complexity of the set.
- (e.g. Friedberg-Muchnik automatically produces a pair of Turing degrees joining to \emptyset').
- The idea is to construct A in such a way that any splitting of it B, C which tries to achieve $U^A \subset V^B$ and $U^A \subset V^C$ fails on at least one of the clauses.
- We try to “blow-up” V^B, V^C with a lot of measure, so that at least one of them cannot keep up with the restriction of having measure < 1.
- This argument falls into a group of arguments in the LR degrees where ideas and techniques from the Turing degrees can be transferred to the LR case.
- This is not always straightforward, and sometimes even not possible.
About the proof

- a finite injury argument, with some coding for $A \equiv_T \emptyset'$.
- Coding may be avoided by a standard “reverse reasoning” about the complexity of the set.
- (e.g. Friedberg-Muchnik automatically produces a pair of Turing degrees joining to \emptyset').
- The idea is to construct A in such a way that any splitting of it B, C which tries to achieve $U^A \subset V^B$ and $U^A \subset V^C$ fails on at least one of the clauses.
- We try to “blow-up” V^B, V^C with a lot of measure, so that at least one of them cannot keep up with the restriction of having measure < 1.
- This argument falls into a group of arguments in the LR degrees where ideas and techniques from the Turing degrees can be transferred to the LR case.
- This is not always straightforward, and sometimes even not possible.
About the proof

- a finite injury argument, with some coding for $A \equiv_T \emptyset'$.
- Coding may be avoided by a standard “reverse reasoning” about the complexity of the set.
- (e.g. Friedberg-Muchnik automatically produces a pair of Turing degrees joining to \emptyset').
- The idea is to construct A in such a way that any splitting of it B, C which tries to achieve $U^A \subset V^B$ and $U^A \subset V^C$ fails on at least one of the clauses.
- We try to “blow-up” V^B, V^C with a lot of measure, so that at least one of them cannot keep up with the restriction of having measure < 1.
- This argument falls into a group of arguments in the LR degrees where ideas and techniques from the Turing degrees can be transferred to the LR case.
- This is not always straightforward, and sometimes even not possible.
Theorem
A c.e. set A is low for random iff it computes a c.e. set which cannot be split into two c.e. sets of the same LR degree.

- One direction is straightforward.
- The other direction is a genuine LR-permitting argument, the first known one.
- Non-low for random sets “permit measure”.
Permitting below a non-low for random

Theorem
A c.e. set A is low for random iff it computes a c.e. set which cannot be split into two c.e. sets of the same LR degree.

- One direction is straightforward.
- The other direction is a genuine LR-permitting argument, the first known one.
- Non-low for random sets “permit measure”.
Permitting below a non-low for random

Theorem
A c.e. set A is low for random iff it computes a c.e. set which cannot be split into two c.e. sets of the same LR degree.

- One direction is straightforward.
- The other direction is a genuine LR-permitting argument, the first known one.
- Non-low for random sets “permit measure”.
Permitting below a non-low for random

Theorem
A c.e. set A is low for random iff it computes a c.e. set which cannot be split into two c.e. sets of the same LR degree.

- One direction is straightforward.
- The other direction is a genuine LR-permitting argument, the first known one.
- Non-low for random sets “permit measure”.
Theorem

A c.e. set A is low for random iff it computes a c.e. set which cannot be split into two c.e. sets of the same LR degree.

- One direction is straightforward.
- The other direction is a genuine LR-permitting argument, the first known one.
- Non-low for random sets “permit measure”.
About the proof

- perform the previous argument below A.
- As we try to blow-up V^B, V^C with measure, the condition that $A \not\subseteq_{LR} \emptyset$ guaranties that enough measure will be permitted by A, so that we succeed in over-blowing one of them.
- note that if $A \not\subseteq_{LR} \emptyset$ then any attempt to cover U^A with a Σ^0_1 class V of measure < 1 fails, i.e. if $U^A \subseteq V$ then $\mu(V) = 1$.
- This means that A has a way to blow large amounts of measure into sets.
- Then we need to map the measure in V onto the measure we actually want to put into V^B, V^C, and use the fact that $\mu(V) = 1$ in order to argue that at least one of V^B, V^C will be large.
About the proof

- perform the previous argument below A.
- As we try to blow-up V^B, V^C with measure, the condition that $A \not\lesssim_{LR} \emptyset$ guarantees that enough measure will be permitted by A, so that we succeed in over-blowing one of them.
- note that if $A \not\lesssim_{LR} \emptyset$ then any attempt to cover U^A with a Σ^0_1 class V of measure < 1 fails, i.e. if $U^A \subseteq V$ then $\mu(V) = 1$.
- This means that A has a way to blow large amounts of measure into sets.
- Then we need to map the measure in V onto the measure we actually want to put into V^B, V^C, and use the fact that $\mu(V) = 1$ in order to argue that at least one of V^B, V^C will be large.
About the proof

- perform the previous argument below A.
- As we try to blow-up V^B, V^C with measure, the condition that $A \not\leq_{LR} \emptyset$ guaranties that enough measure will be permitted by A, so that we succeed in over-blowing one of them.
- note that if $A \not\leq_{LR} \emptyset$ then any attempt to cover U^A with a Σ^0_1 class V of measure < 1 fails, i.e. if $U^A \subseteq V$ then $\mu(V) = 1$.
- This means that A has a way to blow large amounts of measure into sets.
- Then we need to map the measure in V onto the measure we actually want to put into V^B, V^C, and use the fact that $\mu(V) = 1$ in order to argue that at least one of V^B, V^C will be large.
About the proof

• perform the previous argument below A.
• As we try to blow-up V^B, V^C with measure, the condition that $A \not\leq_{LR} \emptyset$ guaranties that enough measure will be permitted by A, so that we succeed in over-blowing one of them.
• note that if $A \not\leq_{LR} \emptyset$ then any attempt to cover U^A with a Σ_1^0 class V of measure < 1 fails, i.e. if $U^A \subseteq V$ then $\mu(V) = 1$.
• This means that A has a way to blow large amounts of measure into sets.
• Then we need to map the measure in V onto the measure we actually want to put into V^B, V^C, and use the fact that $\mu(V) = 1$ in order to argue that at least one of V^B, V^C will be large.
About the proof

- perform the previous argument below A.
- As we try to blow-up V^B, V^C with measure, the condition that $A \not\subseteq_{LR} \emptyset$ guaranties that enough measure will be permitted by A, so that we succeed in over-blowing one of them.
- note that if $A \not\subseteq_{LR} \emptyset$ then any attempt to cover U^A with a Σ^0_1 class V of measure < 1 fails, i.e. if $U^A \subseteq V$ then $\mu(V) = 1$.
- This means that A has a way to blow large amounts of measure into sets.
- Then we need to map the measure in V onto the measure we actually want to put into V^B, V^C, and use the fact that $\mu(V) = 1$ in order to argue that at least one of V^B, V^C will be large.
A question

- The above argument does not combine with coding.
- Does every non-trivial LR degree contain a c.e. set which is not splittable in the same LR degree?
- This is open, but we conjecture a negative answer.
A question

- The above argument does not combine with coding.
- Does every non-trivial LR degree contain a c.e. set which is not splittable in the same LR degree?
- This is open, but we conjecture a negative answer.
A question

- The above argument does not combine with coding.
- Does every non-trivial LR degree contain a c.e. set which is not splittable in the same LR degree?
- This is open, but we conjecture a negative answer.
References

- G. Barmpalias, A. Lewis and F. Stephan, Π_1^0 classes, LR degrees and Turing degrees, preprint.

These are available at www.mcs.vuw.ac.nz/~georgeb
References

- G. Barmpalias, A. Lewis and F. Stephan, Π_1^0 classes, LR degrees and Turing degrees, preprint.

These are available at www.mcs.vuw.ac.nz/~georgeb
References

- G. Barmpalias, A. Lewis and F. Stephan, Π^0_1 classes, LR degrees and Turing degrees, preprint.

These are available at www.mcs.vuw.ac.nz/~georgeb
References

- G. Barmpalias, A. Lewis and F. Stephan, Π^0_1 classes, LR degrees and Turing degrees, preprint.

These are available at www.mcs.vuw.ac.nz/~georgeb
References

- G. Barmpalias, A. Lewis and F. Stephan, Π_1^0 classes, LR degrees and Turing degrees, preprint.

These are available at www.mcs.vuw.ac.nz/~georgeb