Computability and Randomness

George Barmpalias

Victoria University of Wellington

UNT, March 4, 2009
Plan of the talk

- What do we mean by random?
- How can we formalize it?
- Using the theory of Computation
- Algorithmic randomness: Tools and results
- Interactions with classical computability
- Applications to Logic, Mathematics and modelling
- References
When should a binary sequence be called random?

- 00000000000000000000000000000000…
- 0111010111110101010111111101…
- 011101111111011111101111…
- 0111011111110111111011111…
Random means ...

- no structure or patterns
- incompressible, should not have short descriptions
- unpredictable, no betting strategy should succeed on it
It has an obvious pattern

it is compressible: to describe the first n bits I only need the $n/2$ bits of the odd positions

(and an instruction saying to insert a 1 between every two digits)

It is predictable: I can make money by betting on the even bits

(which I am certain they are 1)
Formalization

- It is impossible to define absolute randomness
- (randomness in physics is not what we study)
- We can define it with respect to a class of compressing procedures, betting strategies, patterns etc.
- Algorithmic randomness
- This is based on the theory of computation...
Theory of computation

- What does it mean for a function or a set to be computable?
- When can we say that a function \(f \) can be computed from another function \(g \)?
- What does it mean for two sets to have the same information?
- How can we classify the information content of various mathematical objects?
1930s
Today everyone knows what computable means!
The concept of algorithm existed long before the development of mathematical logic.
But only it was not until the 1930s when a general mathematical definition was given.
This provided a rigorous way to measure, compare and classify information.
Along with that, the concept of a universal machine was conceived.
Machines
The relation X is computable from Y

Oracle Y is thought of as ROM

Induces: X has the same information as Y

and a natural partial order amongst the equivalence classes

This partial order is known as the Degrees of Unsolvability or Turing degrees
Examples of problems

- Problems are coded into sets and assigned a degree of unsolvability.
- **Word problem** for finitely presented groups: given a presentation find if a word is the identity.
- **Hilbert’s 10th problem**: finding if a diophantine equation has an integer root.
- **Halting problem**: decide if a given machine halts on a given input.
Examples of reductions

- Given a solution to Hilbert’s 10th problem we can solve the word problem of any finitely presented group.
- The halting problem contains the same information as Hilbert’s 10th problem.
These problems are Computably enumerable

Solutions can be searched via effective procedures (may never halt)

A set is computably enumerable if it can be enumerated by a machine.

There is a complete c.e. set, one that computes all others.

The complete c.e. degree contains many interesting problems.

For example, the word problem, Hilbert’s 10th problem and the halting problem.
Degrees of Unsolvability

- There is a least degree, containing the computable sets.
- Upper semi-lattice:
 \[X \oplus Y = \{2n, 2m + 1 \mid n \in X \land m \in Y\} \]
- Countable predecessor property
- (Spector) There is a minimal degree
Degrees of Unsolvability \mathcal{D}

- Have been studied for more than 60 years
- Very complex structure:
 - Every upper semilattice of size \aleph_1 with the countable predecessor property can be embedded as an initial segment in \mathcal{D} (Abraham-Shore 1986)
- Beyond this, the problem is independent from ZFC (Slaman, Groszek 1983)
Mathematical Randomness

- Algorithmic randomness is defined with respect to computable processes of some sort.
- Randoms should have no structure which is identifiable by some effective procedure.
- Be incompressible, with respect to effective compression.
- Be unpredictable, with respect to effective betting functions.
- Ratio of 1s over all digits should tend to 1/2.
Selection rule is a function $f : \mathbb{N} \rightarrow \mathbb{N}$ telling us which bits to look at.

$$R_n^f(X) = \left\{ m < n \mid X(f(m)) = 1 \right\}$$

X is Von Mises random if $\lim_n R_n^f(X) = 1/2$ for all 'acceptable' selection rules.

For any countable set of selection rules, there are Von Mises random sequences (Wald).

Ville showed that there are Von Mises random sequences X such that $\forall n R_n(X) \geq 1/2$.

...where $R_n(X) = \left\{ m < n \mid X(m) = 1 \right\}$
People 1960s
Three approaches to Randomness

- **The statistician’s approach**: Deal directly with rare patterns using measure theory. Random sequences should not have rare properties.
- **The coder’s approach**: Rare patterns can be used to compress information. Random sequences should not be compressible (i.e., easily describable).
- **The gambler’s approach**: A betting strategy can exploit rare patterns. Random sequences should be unpredictable.
Equivalence of methods

- Use measure, prefix-free machines or martingales (and semi-measures)
- Equivalence was proved by Schnorr, Chaitin in 1970s
Statistician’s approach

- Martin-Löf in the 1960s
- A sequence is random if it is not contained in an effectively null G_δ set: $\cap_i U_i$
- By varying the effectivity requirement on the G_δ set we get stronger or weaker notions of randomness.
- Applications like gzip work by applying similar effective tests on given data
Kolmogorov, Chaitin and Levin in 1960s

There is an optimal (universal) machine which gives descriptions

The descriptive complexity of a string σ is the length of its shortest description

and is denoted by $K(\sigma)$

A sequence X is random if $K(X \upharpoonright n) \geq n - c$ for all n and a constant c

To describe the first n bits of the sequence you need to use n bits (modulo a constant)
Randomness notions relativize to any oracle

Thus we can talk about a sequence X being random relative to Y

A classic theorem is: $X \oplus Y$ is random iff X is random and Y is X-random

Randomness relative to an oracle X refers to sequences whose ‘patterns’ are beyond the ability of X to recognize

In other words, sequences that are incompressible given information X

Descriptive complexity relative to X is denoted by K^X
A Remarkable Fact

There are certain non-computable sets that cannot compress better than a computable one. These are known as the K-trivial or low for K sets: \(K_A = K + K \). Solovay 1976, Kummer, Kučera-Terwijn 1999, Nies (Adv. Math. 2005)
There are certain non-computable sets that cannot compress better than a computable one.
There are certain non-computable sets that cannot compress better than a computable one.

These are known as the K-trivial or low for K sets: $K^A \equiv^+ K$.

Kučera’s Question, 1999

How many oracles can compress at most as well as a computable oracle?
Generalized Question

Given X, how many oracles compress at most as well as X?

What is the cardinality of $\{ Y \mid \forall \sigma \ K^X(\sigma) \leq^+ K^Y(\sigma) \}$?
Partial answers

- It can be either \aleph_0 or 2^{\aleph_0} as the set is Borel.
- If X is computable, then it is \aleph_0 (Nies, 2005).
- If X sufficiently resembles the halting problem, it is 2^{\aleph_0} (Barmpalias, Lewis, Soskova 2006).
- If X is sufficiently random (i.e. random relative to the halting problem), it is \aleph_0 (Miller 2007).
For the class of the sets X computable from the halting problem, the answer is

There are uncountably many oracles compressing at most as well as X iff X can compress better than a computable oracle.

Also, in terms of arithmetical complexity, this is the best possible result.
Measuring compression power of oracles

- If $\forall \sigma \ K^Y(\sigma) \leq^+ K^X(\sigma)$ we say that Y has more compressing power than X
- Similarly we can formalize X can compress exactly as efficiently as Y
- As with the notion of information, we get a degree structure which classifies oracles according to how well they can compress
- It is a generalization of Turing degrees
- An oracle can compress more than the halting problem iff it computes an almost everywhere dominating function (Kjos-Hanssen, Miller 2007)
Comparison of the two theories

Theorem (Barmpalias 2008)

- The Σ^0_1 and Δ^0_2 parts of the two structures are not equivalent.
- In the degrees of compressibility there are no Σ^0_1 or Δ^0_2 minimal pairs.
- The degrees of compressibility resemble the Turing degrees in some ways, but not in others.
There is a function which dominates all computable functions and has minimal degree (Cooper 1974).

Simpson asked:

Is there a function that dominates almost all functions and has minimal degree?

The notion of almost everywhere domination has played a role in the reverse mathematics of measure theory.
Theorem (Barmpalias 2008)

No function of minimal degree can dominate almost all functions.

- This gives a concrete separation of the two notions of highness.
- The same remains to be done in local structures like the c.e. degrees.
- This is part of a more general question:

 What is the role of almost everywhere domination in the Turing degrees?
Halting probability: $\Omega_U = \sum_{U(\sigma) \downarrow} 2^{-|\sigma|}$

- Has the same information as the Halting problem
- but much more compressed
- Complete randoms behave very differently than incomplete randoms
- large amounts of information induce order on a sequence
- **True randoms** should not have too much information
Peano Arithmetic

- Peano Arithmetic is a foundation for number theory (Peano, Dedekind 1800s)
- It is famously **undecidable** (Gödel 1931)
- A **complete model** of PA is one where for every sentence \(\phi \), either \(\phi \) or \(\neg \phi \) is provable
- A completion, like the algebraic closure of a field
Sets that compute a complete extension of Peano Arithmetic are related to random sets (Kučera 1980s)

A true random does not compute a complete model of Peano Arithmetic (Stephan 2002)

Dichotomy of randomness: complete randoms are very different than incomplete randoms

Incomplete randoms are low in information

However...
Theorem (Barmpalias, Lewis, Ng 2008)

Every degree which computes a complete model of Peano Arithmetic is the least upper bound of two random degrees.
Non-randoms and joins of randoms
Future Research

- What information can be coded into incomplete random sets and how?
- Incomplete random degrees are poorly understood
- How exactly do random sequences resemble low information?
- Effective Hausdorff dimension, packing dimension
- How about higher randomness and descriptive set theory? (Hjorth, Nies)
Applications to other fields

- **Differential Geometry**: Soare, Nabutovsky and S. Weinberger have applied the theory of Turing degrees and randomness in the construction of various manifolds that give information on the geometry of Riemannian metrics modulo diffeomorphisms.

- **Models of Arithmetic**: Kučera and Slaman have answered a question of Friedman and A. McAllister on models of Peano Arithmetic and reverse mathematics, using the K-trivial sets.
Applications to other fields

- **Eff. Model theory:** Khoussainov, Semukhin, and Stephan used Kolmogorov complexity to solve a well-known open question in computable model theory

 (Does there exist a computable not \(\aleph_0\)-categorical saturated structure with a unique computable isomorphism type?)

- **Brownian motion, modelling, image compression, thermodynamics etc.** In Li and Vitanyi’s *An introduction to Kolmogorov Complexity and its applications*
Applications to other fields

Set theory:

- Slaman and Reimann have studied randomness relative to any continuous measure.

 They showed that the classes of ‘Never continuously random’ oracles are countable by a game-theoretic argument using Borel Determinacy.

- and showed that the result requires Borel determinacy (2008).

- Thus it needs uncountably many iterations of the power set axiom of ZFC (Friedman 1970s).
Borel relations and automata

- Computability is in a way a miniaturization of theory of Borel relations
- Hjorth, Nies, Montalbán and Khoussainov have applied methods and results of Borel relations to the study of automata

Barmpalias, Lewis, Stephan, Π^0_1 classes, LR degrees and Turing degrees *Ann. Pure Appl. Logic* **156** (2008)

References II

Books

- Li-Vitanyi, *An introduction to Kolmogorov Complexity and its applications*, Springer-Verlag
- Nies, *Computability and Randomness*, Oxford Press
Thank you!